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COMPARISONS OF_METHODB OF COMPUTING BENDING
MOMENTS IN HELICOPTER ROTCR BLADES IN THE
PLANE OF FLAPPING
By John E. Duberg and Arthur -R. Luecker

SUMMARY

Several methods of computing bending moments in
helicopter rotor blades in the plane of flapping are
revliewed, and the results of a numerical example &analyzed
by four dlfferent methods are compared. The effect on
computed bending moments of the tilp-loss correction
Introduced by Wheetley 1s also considered.

The comperlison indlcates that, from the standpoint
of accuracy of results end esse of application, the
method provosed by Clerva 1s the most sultable for routine
anelyses, The tlp-loss correctlion 1s shown to have a
substantial effect on computed bending moments.

INTRODUCTION

The determinetlon of the bending stresses in rotor
blades during flight 1s one of the importent problems 1n
the streas analysis of the structure of the helicopter.
The problem is complicated by the fact that the alr loads
and the inertis loads are continuously changing as the
blades rotate ané that the bending deflection of the
blades has an important effect on the momeénts developed
therein. The ansalysis can be sinplified if the blades
are assumed rigid and therefore unable to bend, but under
this assumptlion the computed bending stresses superimposed
on the centrifugal-tension stresses are relatively high.
A more exact analysis, in which the relleving effects of
centrifugal tenslon on blade bending are included, glves
much lower values for these calculated bending stresses.

In the present paper comparisons are made between
the varlous methods that h=ve been proposed for the
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calculation of the kending stresses 1n the plane of
flepping. The effeet of Introducing a correction for
tip loss, which has heretofore been ignored in stress
analyses, 1s also considered. A numerlcal example 1s
analyzed by esch of the several methods to provide a
concrete basls for the comparisons.

THEORY AND BASIC ASSUMPTIONS OF METHODS OF ANALYSIS

The basic rotor theory on which stress analyses of
rotor blades are based is that of Glauert, Lock, and

" Wheatley. (See references 1, 2, and 3, respectively.)

A conslderation of the forces acting on the rotor blade
during steady forward flight, as glven by this theory,
indicates that the total bending moment at eny radlal
station may be resolved into the following three components:

(1) A component that 1s 1ldentical with the bending
moment 1n a rigid blade and 1s therefore
independent of blade bendlng

(2) A component, due to axial tenslon, that depends
on the blade deflection and therefore varles
as the blade bends

(3) A component due to the 1lnertla forces associated
with the variatlion of the deflectlion with tlme

In the simplified theories, in whilich the blade ls assumed
static and rigld, the second and third components do not
occur, %hen flexlbility 1s taken into account so that

the sscond component 1s included, the problem 1s compli-
cated because of the Interaction between the moments and
the blede deflectliens., If the third component is 1ncludeq,
the problem is further complicated because the elastic
curve must satlisfy dynamic as well as static conditions.

METHODS CF ANALYSIS

The methods of analysls for rotor-blade bending
moments in the-plane of flapping that are avallable 1in
the literature fall 1nto three categorles as follows:

(1) "Exact" analyses in which inertia forces due to
rate of change of blade deflections, as well
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as the interactlion bgtween blade deflections
and moments,are considered

(2) Analyses, based on static loadings, that 1nc1ude
interaction between blade bending and moments
but neglect inertla forces due to blade-
bending deflections

(3) Simplified analyses in which the bending moments
for the rigid blade are computed and approxi-
mate corrections to account for the reduction
In the bending moment due to the axial load
are applled; the reductlon due to the axial
1oag has sometimes been called centrifugsl
relief

The analysis glven in reference l 18 believed to be
the only publlshed sxzmct analysls and 1s based on the
rotor theory of references 1, 2, and 5. This theory has
been refined and extcnded in roference 3. 1In eppendix A
of the present pener, one of these reflnements -~ allowance
for the reductlon 1in 1ift near the blade tip - 1s intro-
duced into the analysis of blade bending.

Most of the solutlons that have been presented 1n the
literature fell Into the second category, in which the
problem treated ls purely a statlc one. Thls approach
reduces the problem to that of a beam under comblned
bending and tension and, therefore, the methods developed
for such problems can be applied to the analysls of rotor-
blade moments. In reference 6, a solution of this class,
which makes use of "type" solutlions to facllitate the
numerical calculations, 1s glven as a simplification of
the analysls of reference lj. Two other methods of solving
the static problem are given in references 7 and 8. 1In
roeference 7 the solutlion 1s effected by means of the theo-
rem of thres moments generallzed to lnclude the effect of
centrifugal tenslon. In reforenco 8 the solution 1is
obtained by finding a deflected shape for the blade that
1s consistent with a minimum of potential energy for the
system.,

The methods of the third category, whilch should have
more appeal for use in practical applications, provide
simplified formulas for obtaining the bending moments in
the blade by correcting the rigid-blade bendlng moments
for the relief caused by centrlfugal tension. Clerva has
proposed a formula, given in reference 6, which states
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that the moment developed in the actual rotor blade is
equal to the product of the rigld-blade bending moment

and the perfectly flexible blade bending moment divided
by the sum of these two moments. The perfectly flexible
blade bending moment 1s a fictitious bending moment
obtalned by multiplying the stiffness of the actual blade
by the curvature of the perfectly flexlble blade. The
solutions for the rigld-blade bending moment and the
flexible-blade bending moment are given in appendix B.
Hohenemser 1in reference 9 has developed a method of com-
puting the blade bending moment by multiplying the rigid-
blade moment by a correction factor, glven herein in
appendix B, that depends on the blade radlus, blade
stiffness, and centrifugal force at the root. The formula
is developed on the basls of uniform dlstribution along
the length of the blade of both the blade mass and blade
bending stiffness., Reference 10 contalns a brlef discus-
sion of Hohenemser'!s formula as well as the development

of formulas for the calculation of the rigld-blade bending
moments,

Although wind-tunnel and flight tests have proved
the basic rotor theory relisble when applied to the rotor
as a whole, the theory contains approximations that railse
some doubts as to the order of accuracy in computing air
forces at particular points 1n the rotor disk and, hence,
doubts as to the accuracy of bending moments computed by
any of the methods mentioned herein. These doubts can be
removed only by further tests 1n which blade bending 1s
measured under operating conditions.

COMPARISON OF BENDING MOMENTS COMPUTED BY
DIFFERENT METHODS

In order to compare the bending moments obtalned by
the several methods of analysis, calculatlons were made
for a rotor with three blades, each having the following
physlcal proparties:

Radius, feet L] L ] L ] a . L] L ] e L ] L] [ ] [ ] [ ] L ] . a [ ] ® L] 12.5
Mass, Blug per foot e o = e % e ° 8 o o v o e =® 000519
1l

Blade chord, Inches . . « &+ ¢ ¢ ¢ ¢ o ¢ s s o s o & 95

Bending stiffness, EI, pound-feet® . . . . . . . . 76&

0
Pitch setting (untwisted), degrees . . « « ¢« ¢« « » . 10



NACA ARR No. L5SE23 5

The rotor was assumed to be rotating at 370 rpm and to
have a forward veloclty of 100 mlles per hour, which
corresponds to a tip-speed ratio p of 0.30. The ratio A
of axlel veloclty to tip speed was essumed to be -0.079;
the negatlve sign indicates flow downward through the
rotor disk.

The bending moments In the plane of flapping have
been computed for the rotor blade described 1n the
precedling paraegraph by methods in each of the three
catagorles of analysis mentloned 1n the preceding section.
The moments computed for four azimuth angles (y) are pre-
sented in figure 1. Inspectlion of these moment diagrams
reveals that only a very small difference in computed
bending moment at any statlon exists between the values
glven by the exact method and this exact method modified
by neglecting the inertla forces due to blade bendling.

The small magnitude of this difference substantliates the
essumption, common to all approximate methods of analysils,
that these lnertia forcss are negligilible,

The method of analysls proposed by Clerva, which 1s
given 1n detall in appendlx B, glves a maximum bending
moment for any azimuth angle that differs only slightly
from the meximum bending moment given by the exact method
for the same azlmuth angle. The moment dlagrams glven by
the Clerva method are 1n close agreement with the moment
diagrams for the exact method except for the outer third
of the blade. In the outer third of the blade the bendlng
moments predicted by the Clerva formula decrease to zero
less rapldly than those predicted by the exact method, but
this fact 1s of little consequence because in thils part
of the blade the moments are less than the maximum moment.

The method of analysls proposed by Hohenemser glves,
a8 shown in figure 1, a bending moment dlagram at each
azimuth angle that differs appreciably from those glven
by the other methods. The computed moment 1s higher in
the inner part of the blade and lower 1n the outer part
as compared wlth the moment computed by the exact method.
At an szimuth angle V of 90°, where the maximum bending
moment approaches 1its smallest value, the Hohenemser
method gives a maximum bending moment appreclably higher
than that given by the exact method. At = 270°, where
the maximum bendlng moment approaches its largest valus,
the Hohenemser method glves a maxlimum bendlng moment
appreclably smaller than that glven by the exact method.
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The labor requlired to evaluate the bending stress
by the approximate methods of Clerva and Hohenemser 1s
only a small fraction of the labor required by the more
exact methods. Of these two approximate methods, that of
Clerva 1s recommended for practical stress analysis of
helicopter blades because the bending stresses obtalned
thereby are in good agreement with those glven by the exact
method.

In figure 2 are shown the results obtained by the
exact analysis extended to include the effect of tip loss
by the method introduced by Wheatley (reference 3). The
tip-loss factor was assumed to be 0.97, which means that
the outer 3 percent of the blade 1ls assumed to produce
no 1ift. The method of analysis used assumes zero moment
at the 0.97 point and does not consider bending between
this point and the tip. At all ezlimuth angles, the
consideration of tlp loss reduces the maximum bending
moment consliderably and causes & reversal of bendlng near
the tip. Because the assumption made concerning tip
effect 18 only a crude approximation of the actual 1lift
distribution in thils reglon, the calculatcd moments near
the tip may be very much in error. The large reduction
In the bending moment near the center, however, 1s
significant,

The bendlng stresses at each station in the rotor
blades of a hellcopter vary between a maximum and a
minimum with each revolutlion of the rotor. For the par-
ticular blade analyzed, which was assumed to be of all-
metal alumlnum-alloy construction with a section modulus
of 0.167 inch cubed and an effective cross-sectlional area
of 0.56 square inch, the total stress, which includes the
centrifugal tension and the superposed bendlng stress,
varied between the limits shown 1In figure 3 for the upper
and lower flbers at the different stations along the
blade. Flgure 3 1s based on the results of the exact
bending-moment analysls, neglecting tip loss.

CONCLUSIONS

A comparlison was made of rotor blade bending-moments
obtained by several methods of analysis. The results for
the single numerical example studled 1lndicate that the
addltional accuracy obtalnable by the%exactM analysis, when
compared with the best of the approximate methods now in
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use, does not justify the extra labor involved in applying
the exact method.

Of the two approximate methods studled, that of Clerva
gives the best over-all agreement with the more exact
analysls and 1s well sulted for the determination of
stresses in blades. The method proposed by Hohenemser,
although easier to apply thean the Clerva method, is less
desirable because 1t gives maximum bending moments that
may differ by as much as one~gquarter from those computed
by the exact method.

Consideration of tlp loss results 1n a substantlal
reduction in maximum bending moments and should receive
further attention in future studies of methods of blade
stress analysls.

Langley Memorial Aeronsutlcal Laborsatory
Natlonal Advisory Committee for Aeronautles
Langley Fleld, Va., Ju
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APPENDIX A
EXACT METHOD OF CALCULATING ROTOR-BLADE BENDING MOMENTS
Differentlal Equation of Blade Bending

The basic assumptions of the blade-bendling analysis
referred to herein as the exact method are ldentical wlth
those used in reference l; for the development of the dif-
ferential equation except that a correction 1s added to
include the effect of tip loss. The correction for tip
loss follows the method developed by Wheatley in refer-
ence 3 1n which the air load on the outer few percent of
the blade 1s neglected.

Flgure l shows the coordinate system used and the
nomenclature involved 1in definling the deviation of the
flexible blade from the rigld blade. The symbols used in
the analysls are defined 1n appendix C., In flgure 5 are
shown the forces and moments acting on each blade element.
A consideration of the equllibrium of the element 1n the
direction parallel to the longltudlnal axls of the blade
and 1n the directlion normal to the blade ylelds the
followlng differential equation for the blade bending
deflections:

2QRQ 2 Bh
d - ay . - dy ., 2K 47y _ B"R™ ds
ﬁ K(l + —Pn? x) + _dex + 02 dt2 = B d (Al)

If the blade mass is uniformly distributed frem hinge to
tip, the mass of the tip section, which 1s assumed to be
wlthout air load, 1s

Q = mR(1 - B)
and the distance from the tlp mass to the hinge 1s

Rq = 2(1 + B)

If these relationshlps are substituted in the second term
of the differcntlal equation some simplificatlion results
end the differential equatlon becomes

.d_',tﬁ-K(._l__x2>_Z+2Kx_z ZK_Z ﬂd_s.
dx BP dx2 dx 02 g2 EI dr
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If the tlp loas 1s neglected, B reduces to unlty
and the -differential equation reduces to that given in
reference l. ' S

Blade T.oadinrg

The term on the right-hand side of equation (Al)
renrosents the blade load gradient, which 1s assumed
to be the same as that on a rigld blade. The bldde
loadlng can be avaluated by means of the rotor theory
glven 1n references 1 and 3. In the present analysis the
blades are assumed to be bullt with constant chord and
without twlet and the effect of perliocdlc twlst of the
blades 1s neglocted. The effect of both tyves of twist
can be consldered by the methods of refoerences 2 and 3%,

If the 1lnstantaneous flapping angle of the blades 1is
represented by the equatlion

f = ag - a3 cos Vv - by sin V (A2)

the veloclty components causing aerodynemic forces on
the blades are
\

Up = xBRQ + pRO sin ¢

Up = ARQY =~ xBRQ(al gin ¢ - by cos \L') M 23)
-uRQ(ao - a1 ecs ¥ = by sin w)cos ¥
7
The load gradient 1s then given by
as 1
_ Er— = Ecpa(UTUP + BUTZ) - mBRQaaox - mg (AL)

Introduction of the relationships given 1In equa=-
tions (A3) into equation (Aly), expanding, and neglecting
higher harmonice glves for the load gradient
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I
NAH

par202 {[932;@ + B.( i} 2a°m)x + 29,2 - _2.25._]

[-a132x2 + 28uBx + pM + ﬁu2a1] sin v

[blBZxZ - aguBx + &uzb]_] cos w} (A5)

Flappling Coefficients

The flapping coefflclents ay, &3, and by, which

define the blade motlon gilven in squation (A2), are deter-
mined from the condltlio:n that the moment at the flapplng
hinge 1s zero for all azlmuth angles. The coefflclents
are:

Y I%GBE (B2 + p.2) EB37\.]

%o = ')211
8] = LHJ-U-J-BG + 5>"l > (A6)
3(2% - W)
_ . BuBao

T SER D) Y,

where
M = g(Qm + -é]:mBZR2>

H
o]

!
O
i
=)

O
+
|
H

S
=
\N
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Solution of the Differentiasl Equation of Blade Bending

The method of solution of the differential- equatlion. .

follows that given in reference l.. The blade deflections
are assumed to be expressible in the form

Yy =71tz 8in ¥ + y5 cos ¥ (AT)

in which y;, 75, 8nd y; are functions of the dlstance
along the blede span. ~Substitution of equatlon (A7)} and

(A5) in the dlffsrentiel equation (Al) yields ths following

differential eguations for the functions yi, ¥y, and T3,

dLI".vl - K[é + 2QRQ> -xz] dayl . 2de'y1 - cpaB’-I-Réna [BBZ:KZ

axl mB2R2 ax2 dx 2EI
28om 1( limg
N - ={6 - —
+< cper )™ T 3 u cpaR292>] (48)
6
dhya - K l:]_ + EE—Q:\ ] 2]2 + 2K1r y2 - 2”2 ] EL‘LL_R_ILZ [—alBaxa
dx mBeRa/ dx 2RI

+ 20uBx + (p.)\. + L]2|.|.2a1>] (A9)
Jﬁg 20RQ d%@ o _§m6n2[
22 - gl{1+ —L)- x2 + 2Kx-—- pe by B2x2
axlt K ' mBER2) ] dx2 o !

- BguBx + LlTp2b1_J (410)

The four boundary conditions that the functlons yy, yo,
and Y3 mist sstisfy are : At the hinge the deflection
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and moment are zero, and at radlus BR the moment 1s zero
snd the shear 1s that required to melntaln equilibrium of
the tip mass Q. The last-mentloned boundary condition,
at x = 1.0, can be exnressed in the followling form:

ddy1 an R
A = == + BRA, + =-
ax3 ° R‘?ﬁ?
a3 _ day,
—F =5 -7
ds:? X
<%
d'yz  dvs
A— 2= =2 -3y
dxf dx
where
EI
A = ———
Q2 32R2R,

The differential equations for yi, yo, and y

be solvad approximetely by the method of "collocation".
(See referencs l..} The method of collocation consiats
essentlslly of expressing the solutlon as & linear com-
bination of functions that satisfles the boundary condi-
tlons lndenendently of the value of the coefflclent
assoclated with each functlion. The combination of
functions 1s substituted ilnto the dlfferentlal equation,
and the ccefflclients are so adjlusted that the resultant
expression satlsfles the differential equatlon at as
many points as there are functlons,

When the tilp effect 1s consldered the following
set of functlons can be used:

n_
- -Qmo A A AR P ER N T

x-l-LEi >+ 3

- Bp +1)(p + 2)A + le
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n
y2 = N CZP xp+2 - L.'l-_]'.xp""B
p= - p + 3
1l
ZE: 3p<: p+3

p=1

I3

If the tip effect 1s neglected, the form of the
solutlion for yy 18

13

n
< 2 + 1

1 = c]_]_x + > Clp xP+1l —-p——xp+2 + p(p )
p=3 p+2 (p + 2)(p + 3)

The form of solution for y, and V3 remains as
before.

Numerical Example

A numerlcal example 1s presented with tlp loss
neglected, for a blade with the followling propertiles
end operating condltlions:

R = 12.5 feet
1

c = 95 inches
m = 0.0519 slug per foot
a = 5.7

BI = 7640 pound-feet®
{1 = 38.8 radians per second
= 0.3%00
-0.079
= 10° = 0.175 radien

]

= 0.00230 slug per cublec foot

xp+€>
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If the tlp loss 1s neglected,
B=1.0and Q =0

Equations (A6) give the following values for the
flapping coeffliclents:

8, = 0.077922
a; = 0.096963
by = 0.029827

The factors vy and K have the following values:
Y = 7.5385
K = 124.83

If six functions are chosan for the solution to the
differential equation for y¥j, the form of the equatlion 1s

yl = C]lx + 012 é} - x"" + '120'15) + 013 (xh' - -gxs + —é-xé)

+ C:u_l_ x? - %-l'xé + -;—2::7) + C15 <x6 - %0.1:7 + %g::s)

T . 2;8 + 159
+ C16 (x 21 + 127 (Al1l1)

When this function 1s substituted in the differential
equation (AB8), the equation 1s s=tisfled at the points
x =0, 0.2, 0.4, 0.6, 0.8, and 1.0 1if

€17 = ~0.171 foot Cyl = =0.919 foot
Ci2 = 0.133 foot Ci5 = 0.569 foot
Cy3 = 1.197 feet C14 = 0.503 foot
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Substitution of the coefflclents in equation (All)
ylelds

¥y = =0.171x + 0.133x3 + 1.064xt - 2.315x5 + 2.273x6
-0.748x7 -0.449x8 + 0.293x9

The corresponding bending moments are obtained by

differentiating twice and multiplying by E%, which gilves
R

My = 48.9(0.795x + 12.77x2 - L6.30x5 + 68.18xk

-31.40x5 - 25.17x6 + 21.12xT)

By a similar process the rasults for M» and M5 corre-
sponding to the deflectlions yo and yz are

= 4€.9(5.16x - 42.19x2 + 136.1x3 - 239.9x4
+ 232.325 - 109.2x6 + 17.8x7)
Mz = 148.9(0.333x + 1.32x2 - 5.08x3 + 5.93x+
+ 1.59%5 - 9.18x6 + 5.09x7)

The general expression for the bending moments 1ls
M=M + M siln ¥ + M3 cos ¥

At a distance from the flapping hinge of x = 0.6 the
bending moment 1is

= L43.2 - 15.9 sin ¥ + 9.0 cos V¥
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The minimum bending moment at the station =x = 0.6
occurs when V¥ = 120° and is
M =L43.2 - 13.8 - 1.5 = 24.9 pound-feet
The meximum bending moment at the station x = 0.6

occurs when W = 300° and is

M=L43.2 + 13.8 + 1.5 = 61.5 pound-feet
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‘ APPENDIX B
APPROXIMATE METHODS OF CALGULATING ROTOR-
BLADE BENDING MOMENTS
Clerva Method

The Clerva formula for the bendling moment ln a
rotor blade, given in reference 6, 1is

MM

where M, 1s the moment in a rigid blade and My 1s a
fictlitious moment obtained by multiplying the curvature

of a perfectly flexible blade by the actual blade bending
stiffness EI.

If the blade 1s assumed rigid and tip loss 1s
neglected, the rigid-blade bending moment obtained by

Integrating the moment of the load gradlent glven 1in
equation (AS5) is

=1 2 éfg 1, o _ 6 .

w’a
1 Ax sin v
I .
by

+ |bCx - pagBy + L Ax] cos (B2)

+ |-a10x + 20pBxy + <§h +

p-

in which .\\

Ay = ng ng dxdx = %(i - 2x + x2)
Ll .l:l xdxdx = -2-(2 - 3x + x3) > (B3)

Cx = d£1 dﬁn xdxdx = fg(g - Lx + xﬁ)
A

By
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If the blade loading for the perfectly flexlble
blade 1s assumed equal to that of the rigld blade the
fictitious moment exlisting In the blade 1is

e+éap_2.._l§&
2 YRQ2

Mfzgl f -

9R (1 + x)2@
] -~y + ialuz + 3\
+ |-a1 - sin ¢
(1 + x)2 ]
by + &blpa
+ |by - == cos (B}4)
1L 1+ 2

The numerlcal values of My and M, can then be
combined to give the actual blade bending moment according
to equation (Bl).

In reference 9 Hohenemser developed the following
formula for the moment 1n a blade that has a uniform
distribution of both blade mass and blade bending
stiffness:

MI'
M= 5 (B5)
R2P,
1 + 0, 22—
05 EI

in which M, 1s the rigld-blade bending moment and P,
is the centrifugal tenslon at the flappling hinge.

For a blade of unlform mass distribution,

Py = SmRA02

Substitution of the value for P, 1in equation (B5)
reduces this equatlon to

M= %
1 + 0,052k
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in which
o e e e mgliQ2

E= 2EI

Numerlcal Examples
The bending moments in the same blade and for the
same operating conditions es were conslidered in appendix A
are calculated by both Clerva's and Hohenemser's method
for x = 0.6 and Yy = 120° anéd 300°,

‘When the baslec data from appendlx A are substituted
in equation (B2) the following result is obtalned:
M, = 192,000[(0.17500x - 0.1410B, + 0.00651A,)
- (0.09706, - 0.1050B, + 0.0215Ax) sin y

+ (_0.02980x - 0.023448z + 0.00067Ax) cos Q] (B6)

For x = 0.6, equations (B3) give

Ax = 0.0800
By = 0.0693
Cx = 0.0608

Substltution of- these values of Ay, By, and Cx in

equation (B6) gives the following expression for the
rigid-blade moment at x = 0.6:

Mp = 265 = 65 8in ¥ + 48 cos ¥

The perfectly flexible blade bending moment 1is
obtained from equation (B}) and is

Me = 512 0.1750 - _9;12&2_ + {1 =0.0970 + —gélélz— sin ¢
(1+x)2 (1+x)2

+ [0.0298 - —O—'EZ'-B—Jcos i
(1 + x)2
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At x = 0.6,
Mg = 50.7 - 17.4 siny + 8.9 cos ¥

At ¢ = 120° (the approximate position for minimum bending
moment) ,

M, = 265 - 56 - 24 = 185 pound-feet
Mp = 50.7 - 15.1 - L.} = 31.2 pound-feet
Therefore, the Clerva method (see equation (Bl))

gives fgr the bending moment M at the azimuth position
v = 1209,

M= 185 x 31.2 - 26.7 pound-feet
135 + 31

Similarly, the Clerva methcd gilves for ¥ = 500o
M = 58.l. pound-feet
When Hohenemser's method 1s used, at ¥ = 120°,

1
1 + (0.052 x 12).8)

M = 185 x 2lie7 pound-feet

and similerly, &t ¥ = 3000,

1

M = 345 x L16.0 pound-feet

1+ (0.052 x 124.8)
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C1ps C2ps C3p

I

APPENDIX C
- SYMBOLS

~mr o P

dimensionless coefficient (EI/QB?R2320%> '
slope of 11ft curve

constant term in Fourler serles that
expresses f

coefficient of cos ¥ iIn expression for §p
coefficlient of sin ¥ in expression for B

tip-loss factor (blade elements outboard of
radius BR are assumed to have no 1lift)

coefficlents in equations for y;, y», and V3
blade chord (constant)

flexural stiffness of blade

acceleration due to gravity

mass moment of inertims of one rotor blade
about horizontal hinge

dimensionless coefficient (mBuRLlﬂZ/ZEI)
aerodynamic 11ft on blade element at radlus r
bending moment 1n blede at radius r

moments corresponding to the deflectlon
functions y,, yo, and y5

flexible-blade bending moment as defined 1n
eppendix B

bending moment in blade at radius r (blade
assumed to be a rigild body)

wolght moment of blade about horilzontal
hinge
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NACA ARR No. L5E23
mass of blade per unlt length between
hinge and radius BR
an arbitrary Integer

any lnteger greater than zero end less than
or equal to n

tension in blade at radius r
tenslon in blade at horizontal hinge

mass of blade tip between radius ER &nd
radius R

blade radius

diastence from center of rotatlion tec center
of gravity of mass Q

radlus of blade element

shear In the blade st radius »r

time

veloclty component at blade element perpen-
diculer to blade span exls and parallel
to rotor disk

velocity compornent at blede elemsnt perpen-
dicular both to blade span end to TUp

ratlo of blade-element radius to ®R

deflectlon of blade element at radius r,
referred to rilgld-blade pocsitlon

deflectlieon functlons entering lnto the
gensral equation for ¥y

blade flapning angle
angle between plane pseroendicular to axis of

rotatlon and llne connecting horizontal
hinge with blade element at radius r
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d

- —— - e = -

slope of tangent to blade at radius »r,
referred to plane perpendicular to axis
of rotation ' "=

blade azimuth angle, messured in direction
of rotetion from down-wind position

blade pltch angle
angular velocity of rotor

ratlo of component of forward speed 1n plane
pervendlicular to axils of rotation to OR

ratio of axlal inflow velcocity through rctor
to QR

mass constant of rotor blade <%Q%B&
1l

air denslty
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Bending moment, Ib-ft
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Figs. 4,5 : NACA ARR No. L5E23
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Axis of rotation
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Horizontal hinge
NATIONAL ADVISORY
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Figure 4. Geometry of deflected blade .
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Figure 5. - Forces acting on a blade element in plane of flapping.




TR

31176 01354 2536



